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ABSTRACT

We study the notion of (I)-generating introduced by V. Fonf and J. Lin-

dendstrauss and a related notion of (I)-envelope. As a consequence of

our results we get an easy proof of the James characterization of weak

compactness in Banach spaces with weak* angelic dual unit ball and an

easy proof of the James characterization of reflexivity within a large class

of spaces. We also show by an example that the general James theorem

cannot be proved by this method.

1. Introduction

LetK be a weak* compact convex subset of a dual Banach spaceX∗ andB ⊂ K.

Then the set B (I)-generates K if for every representation of B as
⋃∞

n=1 Cn

we have that K is the norm closed convex hull of
⋃∞

n=1 convCn
w∗

.

This notion was introduced by V. Fonf and J. Lindenstrauss in [5]. The main

application is their Theorem 2.3 which says that B (I)-generates K whenever B

is a boundary of K (i.e., whenever the function k 7→ k(x) attains its maximum

on K at some point of B, for each x ∈ X). As a consequence of this theorem

one gets a separable version of the James theorem, even in a stronger form (see

[5]).

In the present paper, we study the notion of (I)-generation in nonseparable

Banach spaces. Let us start by introducing the following natural concept of

(I)-envelope.
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Let X be a Banach space and B ⊂ X∗, the (I)-envelope of B is defined by

the formula

(1) (I)-env(B) =
⋂

{
conv

∞⋃

n=1

convCn
w∗

‖·‖

: B =

∞⋃

n=1

Cn

}
.

Clearly, an equivalent description is given by

(2) (I)-env(B) =
⋂{ ∞⋃

n=1

convCn
w∗

‖·‖

: Cn ր B

}
.

Remarks 1.1:

(i) The (I)-envelope of B is a norm closed convex set and we obviously have

convB
‖·‖

⊂ (I)-env(B) ⊂ convB
w∗

.

(ii) If B is norm separable, then it is easy to check that

(I)-env(B) = convB
‖·‖

(cf., the proof of [5, Proposition 2.2(a)] or the proof of the separable version

of the James theorem below).

(iii) One can easily check that for any B we have

(I)-env((I)-env(B)) = (I)-env(B),

and hence one can also study (I)-convex sets, i.e., those sets B for which

the (I)-envelope of B is just B. Then the (I)-envelope of B is the smallest

(I)-convex set containing B.

(iv) In the (1) and (2) it is enough to consider only bounded sets Cn.

Indeed, in (1) we can replace the sequence (Cn)n∈N by the sequence

(Cn ∩ mBX∗)m,n∈N and in (2) we can replace the sequence (Cn)n∈N by

the sequence (Cn ∩ nBX∗)n∈N.

The above mentioned result of [5] can be now expressed as follows:

Let X be a Banach space, K ⊂ X∗ a weak* compact convex set and B ⊂ K

a boundary of K. Then K = (I)-envB.

Let us recall the proof of the separable version of the James theorem using

this result (cf., [6, Theorem 5.7]):

Let X be a separable Banach space and B ⊂ X a bounded closed convex set

such that each f ∈ X∗ attains its maximum on B. Then B is a boundary of

K = B
w∗

(consider X canonically embedded into X∗∗), hence K = (I)-env(B).
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However, it easily follows from the separability of X that the (I)-envelope of

B is just B: Let {cn: n ∈ N} be a countable dense subset of B. Then, for each

ε > 0, we have

(I)-env(B) ⊂ conv
⋃

n∈N

cn + εBX∗∗

‖·‖

⊂ B + εBX∗∗ .

As ε > 0 is arbitrary, (I)-env(B) = B. Therefore B = B
w∗

, hence B is weakly

compact.

By a slight modification of the above argument one gets that (I)-env(B) = B

for any closed convex bounded subset B of a subspace of a weakly compactly

generated space (instead of separability one uses the characterization of sub-

spaces of WCG given in [4]). This yields an easy proof of the James theorem

within subspaces of WCG. One is tempted to try to get by this method an easy

proof of the general James theorem. This inspires the following question.

Question 1.2: Let X be a Banach space, B ⊂ X be a bounded closed convex

set such that (I)-env(B) = B
w∗

(X is considered canonically embedded into

X∗∗). Is B then weakly compact?

The positive answer to our question would yield an alternative proof of the

James theorem. Unfortunately (or, perhaps, fortunately), one of the main re-

sults of this paper (Example 4.1 below) shows that the answer is in general

negative. We also get some positive results — we show that the answer is

positive in many cases.

In Sections 2–4 we consider only real Banach spaces without mentioning it

explicitly. However, the situation in complex Banach spaces is completely anal-

ogous as we will see in Section 5.

2. The key lemma and its consequences

A key tool for proving our results is given in the following characterization of

the (I)-envelope.

Lemma 2.1: Let Y be a Banach space, B ⊂ Y ∗ and η ∈ convB
w∗

. Then the

following assertions are equivalent.

(1) η /∈ (I)-env(B).

(2) There is a sequence of xn ∈ BY such that

sup
ξ∈B

lim sup
n→∞

ξ(xn) < inf
n∈N

η(xn).
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(3) There is a sequence of xn ∈ BY such that

sup
ξ∈B

lim sup
n→∞

ξ(xn) < lim inf
n→∞

η(xn).

(4) There is a sequence of xn ∈ BY such that

sup
ξ∈B

lim sup
n→∞

ξ(xn) < lim sup
n→∞

η(xn).

Proof: First note that the implications 2⇒3⇒4 are trivial. The implication

4⇒2 can be easily proved by choosing a suitable subsequence of xn’s. Hence

the assertions (2), (3) and (4) are equivalent.

Let us show that 2⇒1. Let xn ∈ BY satisfy the inequality in the assertion

(2). Choose real numbers c and d such that

sup
ξ∈B

lim sup
n→∞

ξ(xn) < c < d < inf
n∈N

η(xn).

Set

Cn = {ξ ∈ B: (∀k ≥ n)(ξ(xk) ≤ c)}, n ∈ N.

Then each Cn is a closed subset of B and Cn ր B. For each n ∈ N we have

convCn
w∗

⊂ {ξ ∈ convB
w∗

: (∀k ≥ n)(ξ(xk) ≤ c)}.

If ξ ∈
⋃

n∈N
convCn

w∗

we get

‖η − ξ‖ ≥ |η(xn) − ξ(xn)| ≥ d− c,

provided n is large enough. It follows that η /∈ (I)-env(B), hence the assertion

(1) is fulfilled.

Finally we show that 1⇒3. Suppose that η ∈ convB
w∗

\ (I)-env(B). Then

there are Cn, n ∈ N, bounded subsets of B such that Cn ր B, and c > 0 such

that dist(η, convCn
w∗

) > c for each n ∈ N. To finish the proof we need the

following claim.

Claim: Let Y be a Banach space and K ⊂ Y ∗ be a nonempty convex weak*

compact set. Then

dist(0,K) = sup
y∈BY

inf
k∈K

k(y).

Since this equality can be expressed as

inf
k∈K

sup
y∈BY

k(y) = sup
y∈BY

inf
k∈K

k(y),
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the claim follows immediately from [14, Remark 6 and Lemma 11].

If we apply the claim to K = η − convCn
w∗

(note that K is weak* compact

as Cn is bounded), we get that there exists xn ∈ BY such that

η(xn) − sup
ξ∈Cn

ξ(xn) > c.

By passing to a subsequence we may suppose that the sequence η(xn) converges.

Then we have

c ≤ lim inf
n→∞

(η(xn) − sup
ξ∈Cn

ξ(xn)) = lim
n→∞

η(xn) − lim sup
n→∞

sup
ξ∈Cn

ξ(xn),

hence

lim sup
n→∞

sup
ξ∈Cn

ξ(xn) ≤ lim
n→∞

η(xn) − c.

If ξ0 ∈ B is arbitrary, then ξ0 ∈ Cn for n large enough. Thus

lim sup
n→∞

ξ0(xn) ≤ lim sup
n→∞

sup
ξ∈Cn

ξ(xn),

and so

sup
ξ∈B

lim sup
n→∞

ξ(xn) ≤ lim
n→∞

η(xn) − c,

which shows that the assertion (3) is satisfied.

Remark 2.2: If K ⊂ Y ∗ is a convex weak* compact set and B ⊂ K is a bound-

ary of K, then by a consequence of the Simons inequality (see [13, Theorem 3])

we get

sup
ξ∈B

lim sup
n→∞

ξ(xn) ≥ lim sup
n→∞

η(xn),

for any η ∈ K and any bounded sequence of xn ∈ Y . Therefore, by Lemma 2.1

we have K = (I)-env(B). This gives an alternative proof of [5, Theorem 2.3].

We will study mainly the (I)-envelopes of closed convex subsets of a Banach

space considered as subsets of the second dual. Therefore, we give the formu-

lation of Lemma 2.1 for this special case. It is an immediate consequence of

Lemma 2.1.

Lemma 2.3: LetX be a Banach space, B ⊂ X a closed convex set andG ∈ B
w∗

.

Then the following assertions are equivalent.

(1) G /∈ (I)-env(B);

(2) there is a sequence of ξn ∈ BX∗ such that

sup
x∈B

lim sup
n→∞

ξn(x) < inf
n∈N

G(ξn);
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(3) there is a sequence of ξn ∈ BX∗ such that

sup
x∈B

lim sup
n→∞

ξn(x) < lim inf
n→∞

G(ξn);

(4) there is a sequence of ξn ∈ BX∗ such that

sup
x∈B

lim sup
n→∞

ξn(x) < lim sup
n→∞

G(ξn).

As a consequence of this lemma we get the following.

Proposition 2.4: Let X be a Banach space and B ⊂ X be a closed convex

set.

(i) Any element of (I)-env(B) is weak* sequentially continuous.

(ii) If BX∗ is weak* sequentially compact, then any weak* sequentially con-

tinuous element of B
w∗

belongs to (I)-env(B).

Proof: (i) Suppose G ∈ B
w∗

\ B is not weak* sequentially continuous. Then

there is η ∈ X∗ and a sequence ηn ∈ X∗ weak* converging to η such that

G(ηn) 6→ G(η). By the uniform boundedness principle we can assume that all

ηn’s belong to BX∗ . Set ξn = 1
2 (ηn−η). Then ξn ∈ BX∗ , the sequence ξn weak*

converges to 0 and G(ξn) 6→ 0. Without loss of generality we can assume that

infn∈N G(ξn) > 0. Then, by Lemma 2.3(2⇒1), G /∈ (I)-env(B).

(ii) Suppose that BX∗ is weak* sequentially compact and

G ∈ B
w∗

\ (I)-env(B)

is weak* sequentially continuous. Then there is, by Lemma 2.3, a sequence of

ξn ∈ BX∗ such that

sup
x∈B

lim sup
n→∞

ξn(x) < inf
n∈N

G(ξn).

As BX∗ is weak* sequentially compact, there is a subsequence of ξn which weak*

converges. As the above inequality is preserved by passing to a subsequence

(note that the left-hand side cannot increase and the right-hand side cannot

decrease), we can, without loss of generality, suppose that ξn weak* converges

to some ξ ∈ BX∗ . Then

sup
x∈B

lim sup
n→∞

ξn(x) = sup
x∈B

ξ(x)

and, as G is weak* sequentially continuous,

inf
n∈N

G(ξn) ≤ lim
n→∞

G(ξn) = G(ξ).
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Finally, G ∈ B
w∗

, and hence

G(ξ) ≤ sup
x∈B

ξ(x),

which is a contradiction completing the proof.

The assumption that BX∗ is weak* sequentially compact in the assertion (ii)

of the previous proposition cannot be omitted. It is witnessed by the following

example.

Example 2.5: Let X = ℓ∞ and B be the unit ball of c0 (note that c0 is a

subspace of ℓ∞). Then (I)-env(B) = B, B is not weakly compact and any

element of X∗∗ is weak* sequentially continuous.

Proof: Since B is separable, we have (I)-env(B) = B (cf., Remark 1.1). Fur-

ther, B is not weakly compact as c0 is not reflexive. Finally, the space ℓ∞ has

the Grothendieck property, i.e. weak and weak* convergence of sequences coin-

cide in X∗ (see, [2, Theorem VII.15]). Therefore, any element of X∗∗ is weak*

sequentially continuous.

3. (I)-envelopes of closed convex sets

In this section we collect partial positive answers to Question 1.2. We con-

sider any Banach space canonically embedded into its second dual and the (I)-

envelopes of closed convex sets are done in the second dual.

The first theorem contains a positive answer to Question 1.2 within the Ba-

nach spaces with angelic dual unit ball. Recall that a compact space K is

angelic if closures in K can be described by converging sequences (i.e., if when-

ever A ⊂ K and x ∈ A, then there is a sequence xn ∈ A with xn → x). A wide

class of Banach spaces with angelic dual unit ball is that of weakly Lindelöf

determined spaces. A space X is weakly Lindelöf determined if there is

M ⊂ X with spanM dense in X such that {m ∈M : ξ(m) 6= 0} is countable for

each ξ ∈ X∗. Some properties of this class can be found in [1], [3, Chapter 7]

or [8]. The fact that the dual unit balls of spaces from this class are angelic is

well-known, a proof can be found in [8, Lemma 1.6 and Theorem 4.17].

Theorem 3.1: Let X be a Banach space such that (BX∗ , w∗) is angelic. Then

(I)-env(B) = B for each closed convex set B ⊂ X . In particular, it is true if X

is weakly Lindelöf determined.

Proof: Suppose G ∈ B
w∗

\ B. Then G ∈ X∗∗ \ X and hence G|BX∗
is

not weak* continuous by [7, Corollary 224]. As BX∗ is angelic, it follows
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that G is not weak* sequentially continuous. Hence G /∈ (I)-env(B) by

Proposition 2.4(i).

The previous theorem contains a stronger result than just a positive answer

to Question 1.2. It asserts that the (I)-envelope of any bounded closed convex

set B in a space from the specified class is just the set B with no point added.

The following example shows that it is not always the case.

Example 3.2: Let X be the space of all continuous functions on the ordinal

interval [0, ω1] equipped with the maximum metric and B be the closed unit

ball of X . Then B $ (I)-env(B) $ B
w∗

.

Proof: Let X = C([0, ω1]). Then X∗ can be canonically identified with

ℓ1([0, ω1]) and X∗∗ with ℓ∞([0, ω1]). The bidual unit ball BX∗∗ is then rep-

resented by [−1, 1][0,ω1] and the weak* topology on this ball coincides with

the product topology (i.e., pointwise convergence topology). We claim that

χ{ω1} ∈ (I)-env(BX) \BX .

Indeed, let BX =
⋃

n∈N
Cn. Then, for some n ∈ N, Cn contains χ(α,ω1], for

uncountably many α < ω1. The element χ{ω1} is then in the weak* closure of

that Cn. It follows that χ{ω1} ∈ (I)-env(BX). The fact that χ{ω1} /∈ BX is

obvious.

On the other hand, (I)-env(BX) is not equal to BX∗∗ since

χ{ω} ∈ BX∗∗ \ (I)-env(BX).

The latter fact follows from Proposition 2.4(i) as χ{ω} is not weak* sequentially

continuous. Indeed, the sequence of Dirac measures δn, n < ω, weak* converges

to δω, while χ{ω}(δn) = 0 6→ 1 = χ{ω}(δω).

Remark 3.3: Note that we could show that χ{ω1} ∈ (I)-env(BX) by referring

to Proposition 2.4(ii). Indeed, χ{ω1} is weak* sequentially continuous and BX∗

is weak* sequentially compact as X is an Asplund space. But the above proof

is more direct and elementary.

The following theorem deals with a particular case of Question 1.2; the case

when the set B in question is the closed unit ball of X .

Theorem 3.4: Let X be a Banach space such that (I)-env(BX) = BX∗∗ . Then

X has the Grothendieck property, i.e., the weak and weak* convergences of

sequences coincide in X∗.

Proof: Suppose that X does not have Grothendieck property. Then there is

a sequence ξn ∈ X∗ weak* converging to 0 such that G(ξn) 6→ 0 for some
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G ∈ BX∗∗ . Then G is not weak* sequentially continuous and hence G /∈

(I)-env(BX) by Proposition 2.4(i).

Reflexive spaces, of course, have the Grothendieck property. However, there

are also nonreflexive spaces with this property. By a result of Grothendieck

(see [2, Theorem VII.15]) the space ℓ∞ has the Grothendieck property. Further

spaces enjoying the Grothendieck property are, for example, the spaces ℓ∞(E)

of E-valued bounded sequences, where E is a B-convex Banach lattice [10] and

weak Lp spaces for 1 < p <∞ [11]. However, there are large classes of Banach

spaces which contain no nonreflexive space with the Grothendieck property. We

collect some significant ones in the following corollaries. We start by a rather

technical but quite general one.

Corollary 3.5: Let X be a Banach space such that (I)-env(BX) = BX∗∗ . If

there is M ⊂ X∗ weak* sequentially compact such that M
w∗

has nonempty

interior in the norm, then X is reflexive.

Proof: By Theorem 3.4 the set M is weakly sequentially compact and hence,

by Eberlein-Šmulyan theorem (see e.g., [7, Theorem 229]), weakly compact.

Hence the weak* topology on M coincide with the weak one. Thus M is weak*

compact and so weak* closed. It follows that M has nonempty interior in the

norm. Hence, clearly BX∗ is weakly compact and thus X is reflexive.

The assumption of the preceding corollary is satisfied, in particular, if BX∗ is

weak* sequentially compact. Significant classes of such spaces are pointed out

in the next corollary.

Corollary 3.6: Let X be a weak Asplund space (or at least a Gâteaux dif-

ferentiability space) such that (I)-env(BX) = BX∗∗ . Then X is reflexive.

Proof: By [3, Theorem 2.1.2] the dual unit ball BX∗ is weak* sequentially

compact. The result then follows from Corollary 3.5.

Weak Asplund spaces and Gâteaux differentiability spaces are defined via Gâ-

teaux differentiability of convex functions. The class of weak Asplund spaces

contains all weakly compactly generated spaces and, more generally, all weakly

countably determined spaces and, of course, all Asplund spaces. These results

and other properties of these classes can be found in [3].

Another class of Banach spaces for which Corollary 3.5 can be applied is de-

fined using Valdivia compact spaces. Recall that a compact spaceK is Valdivia



166 O. F. K. KALENDA Isr. J. Math.

provided it is homeomorphic to a subset K ′ ⊂ RΓ for a set Γ such that the set

A = {k ∈ K ′: {γ ∈ Γ: k(γ) 6= 0} is countable}

is dense in K ′. More information on Valdivia compacta and their use in Banach

space theory can be found in [8], the class of continuous images of Valdivia

compacta is investigated in [9].

Corollary 3.7: Let X be a Banach space such that (I)-env(BX) = BX∗∗ . If

there is an equivalent norm on X such that the respective dual unit ball is a

continuous image of a Valdivia compactum (i.e., if X is a subspace of a Plichko

space), then X is reflexive.

Proof: This follows from Corollary 3.5 using the fact that any continuous

image of a Valdivia compactum contains a dense sequentially compact subset.

(Note that the set A from the above definition of a Valdivia compactum is

sequentially compact (see e.g., [8, Lemma 1.6]) and that sequentially compact

spaces are preserved by continuous mappings.)

4. The unit balls of C(K) spaces

The aim of this section is to prove the following example which give a negative

answer to Question 1.2. The choice of ℓ∞ is quite natural due to Theorem 3.4,

as ℓ∞ has the Grothendieck property.

Example 4.1: Let X = ℓ∞. Then (I)-env(BX) = BX∗∗ .

The space ℓ∞ is isometric to the space of continuous functions on the compact

space βN. Therefore, we give a result on C(K) spaces.

The following proposition characterizes those compact spaces K for which

the (I)-envelope of the unit ball of C(K) (this space is considered with the

max-norm) is the whole bidual unit ball. Recall that by the Riesz theorem the

dual to C(K) can be identified with the space M(K) of all finite signed Radon

measures on K, the duality is given by

〈µ, f〉 =

∫

K

fdµ,

the norm of a measure as an element of C(K)∗ coincides with its total variation.

We will also work with the bidual C(K)∗∗. It will be sufficient to observe that
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the space of all bounded Borel functions equipped with the sup-norm is isometric

to a subspace of C(K)∗∗ via the duality

〈f, µ〉 =

∫

K

fdµ, µ ∈M(K), f : K → R bounded Borel.

Proposition 4.2: Let K be a compact space. Then the following assertions

are equivalent.

(i) (I)-env(BC(K)) = BC(K)∗∗ .

(ii) Whenever µn and νn are two sequences of Radon probability measures on

K such that µn and νm are mutually singular for each n,m ∈ N and ε > 0

then there are M ⊂ N infinite and disjoint compact subsets A, B such

that for each n ∈M we have µn(A) > 1 − ε and νn(B) > 1 − ε.

Proof: (i)⇒(ii) Suppose that (ii) does not hold. Let µn, νn, n ∈ N, and ε > 0

witness the failure of (ii). For each n ∈ N set λn = 1
2 (µn − νn).

For each pair m,n ∈ N the measures µn and νm are mutually singular and

hence there is a Borel set Cn,m ⊂ K with µn(Cn,m) = 1 and νm(Cn,m) = 0. Set

C =

∞⋃

n=1

∞⋂

m=1

Cn,m.

Then C is a Borel set and for each n ∈ N we have µn(C) = 1 and νn(C) = 0.

The function χC − χK\C is a Borel function with norm 1 and satisfies

〈χC − χK\C , λn〉 = λn(C) − λn(K \ C) = 1,

for each n ∈ N.

Further, let f ∈ BC(K) be arbitrary. Let

A = {x ∈ K: f(x) ≥ ε/2} and B = {x ∈ K: f(x) ≤ −ε/2}.

Then A and B are disjoint compact subsets of K and hence (by the choice of

µn’s, νn’s and ε) there is an n0 ∈ N such that for each n ≥ n0 we have either

µn(A) ≤ 1 − ε or νn(B) ≤ 1 − ε.

Suppose that n ∈ N is such that µn(A) ≤ 1 − ε. Then

〈λn, f〉 =

∫

K

fdλn =
1

2

( ∫

K

fdµn −

∫

K

fdνn

)

=
1

2

( ∫

A

fdµn +

∫

K\A

fdµn −

∫

K

fdνn

)

≤
1

2
(µn(A) + ε/2 + 1)

≤
1

2
(1 − ε+ ε/2 + 1) = 1 − ε/4
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If νn(B) ≤ 1 − ε, we get by similar computation again 〈λn, f〉 ≤ 1 − ε/4.

Hence

sup
f∈BC(K)

lim sup
n→∞

〈λn, f〉 ≤ 1 − ε/4,

and so χC −χK\C does not belong to the (I)-envelope of BC(K), by Lemma 2.3.

Hence (i) is not satisfied.

(ii)⇒(i) Suppose that (ii) is satisfied. We will show that (i) is satisfied as well.

First we claim that it suffices to show that χC−χK\C belongs to the (I)-envelope

of BC(K) for each Borel set C ⊂ K. Indeed, if µ ∈ M(K) is arbitrary, then

µ = µ+−µ− and there is a Borel set C such that µ−(C) = 0 and µ+(K \C) = 0.

Then 〈χC − χK\C , µ〉 = ‖µ‖. It follows that the functions of this form form a

boundary for BC(K)∗∗ and hence their (I)-envelope is whole bidual unit ball,

by [5, Theorem 2.3]. As (I)-env((I)-env(BC(K))) = (I)-env(BC(K)), the claim is

proved.

Now suppose we have C ⊂ K Borel. We will show, using Lemma 2.3, that

χC−χK\C belongs to (I)-env(BC(K)). Suppose we have a sequence λn ∈ BM(K)

and

α = inf
n∈N

〈χC − χK\C , λn〉 > 0.

If λn(C) = 0 for infinitely many n’s, then −λn(K) = −λn(K \ C) ≥ α for

infinitely many n’s, and hence

lim sup
n→∞

〈λn,−1〉 = lim sup
n→∞

−λn(K) ≥ α.

Similarly, if λn(K \ C) = 0 for infinitely many n’s, then

lim sup
n→∞

〈λn, 1〉 = lim sup
n→∞

λn(K) ≥ α.

As the constant functions 1 and −1 belong to BC(K), in both cases we get

χC − χK\C ∈ (I)-env(BC(K)), by Lemma 2.3.

Finally, suppose that λn(C) 6= 0 and λn(K \C) 6= 0 for all n ∈ N with finitely

many exceptions. We can, without loss of generality, suppose that λn(C) 6= 0

and λn(K \ C) 6= 0 for all n ∈ N. We set

µn =
|λn||C
|λn|(C)

and νn =
|λn||K\C

|λn|(K \ C)
,

for each n ∈ N. Then µn’s and νn’s are probabilities on K and, moreover, µn

and νm are mutually singular for each m,n ∈ N.

Let ε > 0 be arbitrary. By the assumption that (ii) is satisfied there is an

infinite subset M ⊂ N and disjoint closed sets A and B such that µn(A) > 1− ε
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and νn(B) > 1 − ε for all n ∈M . Choose a continuous function f : K → [−1, 1]

with f|A = 1 and f|B = −1.

Fix an arbitrary n ∈M . Then

|λn|(K \ (A ∪B)) ≤ |λn|(C \A) + |λn|((K \ C) \B)

= µn(C \A) · |λn|(C) + νn((K \ C) \B)|λn|(K \ C)

< ε · (|λn|(C) + |λn|(K \ C)) ≤ ε.

Further,

λn(A) = λn(C) − λn(C \A) + λn(A \C) ≥ λn(C) − |λn|(C \A) − |λn|(A \C)

= λn(C) − µn(C \A) · |λn|(C) − νn(A \ C) · |λn|(K \ C)

≥ λn(C) − ε · (|λn|(C) + |λn|(K \ C)) ≥ λn(C) − ε.

Similarly,

λn(B) =λn(K \ C) − λn((K \ C) \B) + λn(B \ (K \ C))

≤λn(K \ C) + νn((K \ C) \B) · |λn|(K \ C) + µn(B ∩ C) · |λn|(C)

≤λn(K \ C) + ε.

Using the three above estimates we get

〈λn, f〉 =

∫

K

fdλn = λn(A) − λn(B) +

∫

K\(A∪B)

fdλn

≥ λn(C) − ε− λn(K \ C) − ε− |λn|(K \ (A ∪B))

> λn(C) − λn(K \ C) − 3ε ≥ α− 3ε.

Hence

lim sup
n→∞

〈λn, f〉 ≥ α− 3ε.

As ε > 0 is arbitrary, we get

sup
f∈BC(K)

lim sup
n→∞

〈λn, f〉 ≥ α,

and hence χC − χK\C ∈ (I)-env(BC(K)) which completes the proof.

The following proposition shows that βN satisfies the condition (ii) of Propo-

sition 4.2. To formulate it we will need the following auxiliary notions. By a

finitely additive measure on N we mean a real-valued additive function defined

on all subsets of N. Let µ and ν be nonnegative finitely additive measures on

N. If ε > 0 and A ⊂ N, we say that A ε-separates µ and ν if µ(A) < ε
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and ν(N \ A) < ε. It is clear that A ε-separates µ and ν if and only if N \ A

ε-separates ν and µ. Further, µ and ν are called separated if for each ε > 0

there is a subset of N which ε-separates µ and ν.

Proposition 4.3: Let µn and νn be two sequences of finitely additive proba-

bilities on N. Suppose that νn and µm are separated for each m,n ∈ N. Then

there is an infinite set Λ ⊂ N such that for each ε > 0 there is a set A ⊂ N
which ε-separates νn and µm for each m,n ∈ Λ.

First we prove Example 4.1 using the previous two propositions.

Proof of Example 4.1: As the space ℓ∞ is isometric to C(βN), we may use

Proposition 4.2. Let µn and νn, n ∈ N be Radon probabilities on βN such that

µm and νn are mutually singular for m,n ∈ N.

Let m,n ∈ N and ε > 0 be arbitrary. As µm and νn are mutually

singular, there are disjoint closed sets A,B ⊂ βN such that µm(A) > 1 − ε

and νn(B) > 1 − ε.

Recall that βN can be viewed as the space of all ultrafilters on N and the

basis of open sets consists of sets

U(M) = {u ∈ βN: M ∈ u}, M ⊂ N.

For each a ∈ A choose Ma such that a ∈ U(Ma) and U(Ma)∩B = ∅. Then Ma,

a ∈ A, is an open cover of A and hence there are finitely many a1, . . . , ak ∈ A

with U(Ma1) ∪ · · · ∪ U(Mak
) ⊃ A. Note that

U(Ma1) ∪ · · · ∪ U(Mak
) = U(Ma1 ∪ · · · ∪Mak

).

Hence, there is an M ⊂ N with A ⊂ U(M) and B ⊂ βN \ U(M) = U(N \M).

If λ is a Radon probability on βN, then

λ̃(M) = λ(U(M)), M ⊂ N

is a finitely additive probability on N. Hence, by the above, µ̃n’s and ν̃n’s

satisfy the assumptions of Proposition 4.3. Let Λ ⊂ N be the infinite set given

by Proposition 4.3. Let ε > 0 be arbitrary and M ⊂ N ε-separates ν̃n and µ̃m

for each m,n ∈M . Then µn(U(M)) > 1− ε and νn(U(N \M)) > 1− ε for each

n ∈ N. This finishes the verification of the condition (ii) of Proposition 4.2 and

hence the latter proposition concludes the proof.

The rest of this section is devoted to the proof of Proposition 4.3. We will

need some auxiliary results.
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Lemma 4.4: Let σn, n ∈ N, be a sequence of nonnegative finitely additive

measures on N such that σn(N) ≤ 1 for each n ∈ N. Let A ⊂ N be infinite and

ε > 0 be such that σn(F ) < ε/2 for each finite set F ⊂ A and each n ∈ N. Then

there is an infinite subset B ⊂ A such that σn(B) < ε for each n ∈ N.

Proof: Let B be an uncountable family of infinite subsets of A such that each

two distinct elements of B have finite intersection (i.e., B is an uncountable

almost disjoint family of infinite subsets of A). The existence of such a family

is a well-known fact proved, for example, in [7, Lemma 96].

We claim that for each n ∈ N there are only finitely many elements B ∈ B

with σn(B) ≥ ε. To see it let k > 2/ε and B1, . . . , Bk be pairwise distinct

elements of B. Set

C =
⋃

{Bi ∩Bj : 1 ≤ i < j ≤ k}.

Then C is a finite subset of A and hence σn(C) < ε/2. Further, the sets

B1 \C, . . . , Bk \C are pairwise disjoint and so there is some i ∈ {1, . . . , k} with

σn(Bi \ C) ≤ 1/k < ε/2. Then σn(Bi) < ε.

It follows that the family

{B ∈ B: ∃n ∈ N: σn(B) ≥ ε}

is countable and hence there is B ∈ B such that σn(B) < ε for all n ∈ N. This

completes the proof.

Lemma 4.5: Let λn, n ∈ N, be a sequence of nonnegative finitely additive

measures on N such that

(a) λn(N) ≤ 1 for each n ∈ N; and

(b) limn→∞ λn({k ∈ N: k ≥ n}) = 0.

Then for each ε > 0 there is an increasing sequence p0 < p1 < p2 < · · · of

positive integers such that for each U ⊂ N infinite we have

lim inf
n→∞

λn

( ⋃

j∈N\U

{k ∈ N: pj−1 ≤ k < pj}

)
≤ ε.

Proof: Let ε > 0 be given. First we show that there is N0 ∈ N such that for

each p > N0 we have

lim inf
n→∞

λn({k ∈ N: N0 ≤ k < p}) < ε/2.

Suppose that it is not the case. Then we can construct an increasing sequence

of integers 1 = N0 < N1 < N2 < · · · such that

lim inf
n→∞

λn({k ∈ N: Nj−1 ≤ k < Nj}) ≥ ε/2
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for each j ∈ N. Hence, for each j ∈ N, we have λn({k ∈ N: Nj−1 ≤ k < Nj}) >

ε/4 for all but finitely many n ∈ N. For each j ∈ N we then get that

λn({k ∈ N: 1 ≤ k < Nj}) > jε/4

for all but finitely many n ∈ N. By choosing j > 4/ε we get a contradiction

with the assumption that λn(N) ≤ 1 for each n ∈ N.

Further we choose N > N0 such that λn({k ∈ N: k ≥ n}) < ε/2 for each

n > N . By the previous paragraph we can construct an increasing sequence of

integers N = p0 < p1 < p2 < · · · such that λpn
({k ∈ N: N ≤ k < pn−1}) < ε/2

for each n ∈ N. It remains to show that this sequence satisfies the required

condition.

Let U ⊂ N be infinite. Set

M =
⋃

j∈N\U

{k ∈ N: pj−1 ≤ k < pj}.

Then, for each n ∈ U , we have

λpn
(M) ≤ λpn

({k ∈ N: N ≤ k < pn−1}) + λpn
({k ∈ N: k ≥ pn})

< ε/2 + ε/2 = ε.

The assertion then easily follows.

Lemma 4.6: Let νn and µn, n ∈ N, be finitely additive probabilities on N such

that for each n ∈ N and each ε > 0 there is a set A ⊂ N which ε-separates µm

and νn for each m ∈ N. Then there is an infinite set Λ ⊂ N such that for each

ε > 0 there is A ⊂ N which ε-separates µm and νn for each m ∈ N and n ∈ Λ.

Proof: Let ε > 0. We first show that there is Λ0 ⊂ N infinite and A ⊂ N which

ε-separates µm and νn for each m ∈ N and n ∈ Λ0.

For each n ∈ N there is a set Bn ⊂ N which ε/2n+2 separates µm and νn for

each m ∈ N. Set Cn = B1 ∪ · · · ∪Bn for n ∈ N. Then

µm(Cn) ≤ µm(B1) + · · · + µm(Bn) < ε/23 + · · · + ε/2n+2 < ε/4

νn(N \ Cn) ≤ νn(N \Bn) < ε/2n+2.

for all m,n ∈ N. We define finitely additive measures λn, n ∈ N, on N by the

formula

λn(A) = νn

( ⋃

k∈A

Ck+1 \ Ck

)
, A ⊂ N, n ∈ N.



Vol. 162, 2007 (I)-ENVELOPES OF CLOSED CONVEX SETS IN BANACH SPACES 173

It is clear that each λn is a nonnegative finitely additive measure on N satisfying

λn(N) ≤ 1. Moreover,

λn({k ∈ N: k ≥ n}) = νn

( ∞⋃

k=1

Ck \ Cn

)
≤ νn(N \ Cn) <

ε

2n+2
,

and hence the sequence λn satisfies the assumptions of Lemma 4.5. Let

p0 < p1 < p2 < · · · be the sequence corresponding to λn’s and ε/2 by Lemma 4.5.

Further, we define finitely additive measures σn, n ∈ N, on N by the formula

σn(U) = µn

( ⋃

j∈U

Cpj
\ Cpj−1

)
, U ⊂ N, n ∈ N.

Then clearly σn(N) ≤ 1 for each n ∈ N and σn(F ) < ε/4 for each finite F ⊂ N.

It follows from Lemma 4.4 that there is U ⊂ N infinite such that σn(U) < ε/2

for all n ∈ N. Set

A = Cp0 ∪
⋃

j∈U

Cpj
\ Cpj−1 .

Then we have for all n ∈ N

µn(A) = µn(Cp0) + σn(U) < ε/4 + ε/2 < ε.

Further, for each n ∈ N we have

νn(N \A) ≤ νn(N \Cn) + νn

( ⋃

j∈N\U

Cpj
\ Cpj−1

)

< ε/4 + λn

( ⋃

j∈N\U

{k ∈ N: pj−1 ≤ k < pj}

)
,

thus

lim inf
n→∞

νn(N \A) ≤ ε/4 + ε/2,

hence νn(N\A) < ε for infinitely many n ∈ N. It follows that there are infinitely

many n ∈ N such that A ε-separates µm and νn for all m ∈ N.

To finish the proof we construct by induction infinite subsets Λ1 ⊃ Λ2 ⊃ · · ·

of N such that for each k ∈ N there is a set Ak ⊂ N which 1
2k+1 -separates µm

and νn for each m ∈ N and n ∈ Λk. We can choose, by induction, pairwise

distinct elements ak ∈ Λk, k ∈ N, and set Λ = {ak: k ∈ N}. Then Λ is an

infinite subset of N. We will show that it satisfies the required condition.
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Let ε > 0. Choose k ∈ N such that 1
2k < ε. For each j ∈ {1, . . . , k − 1}

choose Dj ⊂ N which 1
k2k+1 -separates µm and νaj

for each m ∈ N. Set A =

D1 ∪ · · · ∪Dk−1 ∪Ak. Then we have for each m ∈ N

µm(A) ≤ (k − 1) · 1/(k2k+1) + 1/2k+1 < 1/2k < ε.

If j ∈ {1, . . . , k − 1}, then

νaj
(N \A) ≤ νaj

(N \ Cj) < 1/(k2k+1) < ε.

Finally, if j ≥ k, then aj ∈ Λk and hence

νaj
(N \A) ≤ µaj

(N \Ak) < 1/2k+1 < ε.

This completes the proof.

Proof of Proposition 4.3: Let µn, νn, n ∈ N, satisfy the assumptions of Propo-

sition 4.3.

Let k ∈ N be fixed. We apply Lemma 4.6 to the constant sequence {νk}m∈N

in place of {µm}m∈N and {µn}n∈N in place of {νn}n∈N. We obtain an infinite

set Λ0 ⊂ N such that for each ε > 0 there is an A ⊂ N which ε-separates νk and

µn for each n ∈ Λ0.

By induction we can construct infinite subsets Λ1 ⊃ Λ2 ⊃ Λ3 ⊃ · · · of N such

that whenever n ∈ N and ε > 0 then there is a set A ⊂ N which ε-separates νn

and µm for each m ∈ Λn. Choose pairwise distinct elements cn ∈ Λn, n ∈ N,

and set Λ′ = {cn: n ∈ N}. Then Λ′ is infinite. Moreover, for all n ∈ N and ε > 0

there is a set A ⊂ N which ε-separates νn and µm for all m ∈ Λ0.

To see this, fix n ∈ N and ε > 0. Choose B ⊂ N which ε
2 -separates νn

and µm for all m ∈ Λn. Further, for each j = 1, . . . , n − 1 choose Cj ⊂ N
which ε

2n -separates νn and µcj
. Then it is easy to check that the set A =

B ∪C1 ∪ · · · ∪Cn−1 ε-separates νn and µm for each m ∈ Λ′.

We can, without loss of generality, assume that Λ′ = N, which can be

rephrased as:

For each n ∈ N and each ε > 0 there is a set A ⊂ N which ε-separates µm

and νn for each m ∈ N.

In other words, the assumption of Lemma 4.6 is satisfied. The infinite set Λ

provided by Lemma 4.6 is the one required by Proposition 4.3. This completes

the proof.
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5. The case of complex spaces

The aim of this section is to show that the results formulated and proved in the

previous sections for real spaces can be easily transferred to complex spaces.

If X is a complex Banach space we denote by XR the space X considered as

a real space. Then we have:

(a) The identity map X onto XR is a real-linear isometry and weak-to-weak

homeomorphism.

(b) The map φ: X∗ → X∗
R defined by

φ(ξ)(x) = Re ξ(x), x ∈ X, ξ ∈ X∗,

is a real-linear isometry, weak-to-weak and weak*-to-weak* homeomor-

phism of X∗ onto X∗
R.

(c) The map ψ: X∗∗ → X∗∗
R defined by

ψ(F )(η) = ReF (φ−1(η)), η ∈ X∗
R, F ∈ X∗∗,

is a real-linear isometry and weak*-to-weak* homeomorphism.

(d) Let κ: X → X∗∗ and κR: XR → X∗∗
R denote the canonical embeddings.

Then κR = ψ ◦ κ.

The fact that the identity of X onto XR is a real-linear isometry is obvious.

The map φ is obviously real linear. The fact that it is an onto isometry is

easy and it is a standard step in proving a complex version of Hahn–Banach

theorem (see e.g., [7, pp. 28–29]). Then it follows easily that the identity of

X onto XR is a weak-to-weak homeomorphism and that φ is a weak*-to-weak*

homeomorphism.

It follows that φ is a linear isometry of (X∗)R onto X∗
R, and hence φ is a

weak-to-weak homeomorphism.

If we apply the previous two paragraphs to X∗ instead of X we get easily (c).

The assertion (d) is obvious.

Let us now suppose that X is a complex Banach space and B ⊂ X . From the

above comparison of X and XR it follows that the (I)-envelope of B in X∗∗
R is

the image by ψ of the (I)-envelope in X∗∗. Further, the dual unit ball of BX∗ is

weak* angelic if and only if BX∗

R
is angelic andX has the Grothendieck property

if and only if XR has the Grothendieck property. It follows that Theorems 3.1

and 3.4 are valid also for complex spaces. The same is true for the corollaries

to Theorem 3.4.

As for Example 3.2, its proof works for the complex space of complex-valued

continuous functions C([0, ω1],C) as well.
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The only not completely trivial fact is that Example 4.1 can be transferred to

complex spaces, namely, that its statement is valid for complex version of ℓ∞.

We note first that Lemma 2.1 is true for complex spaces if we replace ξ(xn)

and η(xn) by Re ξ(xn) and Re η(xn) in assertions (2)–(4). Analogous adaptation

could be done with Lemma 2.3. Further, note that for space of complex-valued

continuous functions the Riesz theorem is true as well (the dual to C(K,C) is

the space of all complex-valued Radon measures on K with the total variation

norm) and bounded Borel functions from K to C can be viewed as a subspace of

C(K,C)∗∗ by the same duality as that described in the beginning of Section 4

for space of real functions.

The fact that if X is the complex version of ℓ∞, then (I)-env(BX) =

(I)-env(BX∗∗) follows immediately from the following proposition.

Proposition 5.1: Let K be a compact space. Then the following assertions

are equivalent.

(1) (I)-env(BC(K,R)) = BC(K,R)∗∗

(2) (I)-env(BC(K,C)) = BC(K,C)∗∗ .

Proof: 2⇒1 Suppose that (1) is not true. Then the condition (ii) of Proposi-

tion 4.2 is violated. Let µn, νn, n ∈ N, and ε > 0 witness that. By the proof of

the implication (i)⇒(ii) of Proposition 4.2 there is a Borel set C ⊂ K such that

µn(C) = 1 and νn(C) = 0 for each n ∈ N. If we set λn = 1
2 (µn − νn), we get

〈χC − χK\C , λn〉 = 1

for all n ∈ N and

sup
f∈BC(K,R)

lim sup
n→∞

〈λn, f〉 ≤ 1 − ε/4.

As ‖Re f‖ ≤ ‖f‖ for each f ∈ C(K,C), we have

sup
f∈BC(K,C)

lim sup
n→∞

Re〈λn, f〉 = sup
f∈BC(K,C)

lim sup
n→∞

〈λn,Re f〉

≤ sup
f∈BC(K,R)

lim sup
n→∞

〈λn, f〉

≤ 1 − ε/4.

Hence by the complex version of Lemma 2.3,

χC − χK\C /∈ (I)-env(BC(K,C)).

1⇒2 Suppose that (1) is satisfied. Then the assertion (ii) of Proposition 4.2

is satisfied as well. The proof will proceed in several steps.
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Step 1: For any µ ∈ C(K,C)∗ there is a Borel function f : K → C such that

|f(x)| = 1 for all x ∈ K and
∫

K
fdµ = ‖µ‖.

As µ is absolutely continuous with respect to |µ|, there is, by a consequence

to the Radon-Nikodým theorem (see e.g., [12, Theorem 6.12]) a |µ|-measurable

function h: K → C such that |h(x)| = 1 |µ|-almost everywhere and
∫

K

gdµ =

∫

K

ghd|µ|

for each integrable function g. We can choose a Borel function f : K → C such

that |f(x)| = 1 for all x ∈ K and f(x) = h(x) |µ|-almost everywhere. Then
∫

K

fdµ =

∫

K

fhd|µ| =

∫

K

hhd|µ| = |µ|(K) = ‖µ‖,

and thus f is the sought function.

Step 2: It suffices to show that f ∈ (I)-env(BC(K,C)) for each Borel function

f : K → C with |f(x)| = 1 for each x ∈ K.

By Step 1 these functions form a boundary of BC(K,C)∗∗ (we use the

identification of C(K,C)∗∗ with C(K,C)∗∗R from the beginning of this sec-

tion). Hence the assertion follows from [5, Theorem 2.3] and the fact that

(I)-env((I)-env(BC(K,C))) = (I)-env(BC(K,C)).

Step 3: Let k ∈ N and µj
n, j = 1, . . . , k, n ∈ N, be Radon probabilities on

K such that µj
m and µl

n are mutually singular whenever j and l are distinct

numbers from {1, . . . , k} and m,n ∈ N are arbitrary. Then for each ε > 0 there

are an infinite subset M ⊂ N and pairwise disjoint compact sets A1, . . . , Ak such

that µj
n(Aj) > 1 − ε for each j ∈ {1, . . . , k} and n ∈M .

Suppose ε > 0. Let (j1, l1), . . . , (jN , lN) be an enumeration of all pairs (j, l) ∈

{1, . . . , k}2 with j < l. As the assertion (ii) of Proposition 4.2 is satisfied, we

may construct infinite sets

N ⊃M1 ⊃M2 ⊃ · · · ⊃MN

and pairs (Ji, Li) of disjoint compact sets such that

µji
n (Ji) > 1 − ε/k and µli

n (Li) > 1 − ε/k for n ∈Mi, i = 1, . . . , N.

Set M = MN and

Aj =
⋂

j=ji

Ji ∩
⋂

j=li

Li, j = 1, . . . , k.

Then M and A1, . . . , Ak clearly have the required properties.
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Step 4: f ∈ (I)-env(BC(K,C)) for each Borel function f : K → C with |f(x)| =

1 for each x ∈ K.

We will use the complex version of Lemma 2.3. Suppose we have a sequence

(of complex measures) λn ∈ BM(K) and

α = inf
n∈N

Re〈f, λn〉 > 0.

Let ε > 0 be arbitrary. Choose N ∈ N such that |e2πi/N − 1| < ε and set

Bj = f−1
({
eit: 2(j − 1)π/N ≤ t < 2jπ/N

})
, j = 1, . . . , N.

Then B1, . . . , BN is a partition of K into Borel sets. There is an infinite set

Λ ⊂ N and a nonempty set F ⊂ {1, . . . , N} such that

F = {j ∈ {1, . . . , N}: |λn|(Bj) > 0}, for each n ∈ Λ.

Renumerate λn, n ∈ Λ, as σn, n ∈ N. For each n ∈ N and j ∈ F set

µj
n =

|σn||Bj

|σn|(Bj)
.

Then each µj
n is a probability and, moreover, µj

n and µl
m are mutually singular

whenever j and l are distinct and m,n ∈ N arbitrary. Hence, by Step 3, there

are M ⊂ N infinite and pairwise disjoint compact sets Aj , j ∈ F , such that

µj
n(Aj) > 1 − ε/N for each j ∈ F and n ∈ M . Let g: K → C be a continuous

function such that |g(x)| ≤ 1 for each x ∈ K and g(x) = e2(j−1)πi/N for x ∈ Aj ,

j ∈ F .

We have for each n ∈M

|σn|

(
K \

⋃

j∈F

Aj

)
≤

∑

j∈F

µj
n(Bj \Aj) · |σn|(Bj) < ε/N ≤ ε.

Further,

|σn|(Aj \Bj)| =
∑

l∈F\{j}

µl
n(Aj ∩Bl) · |σn|(Bl) < ε/N

for each j ∈ F . Hence

∣∣∣∣
∫

K

gdσn−

∫

K

fdσn

∣∣∣∣

≤

∫

K

|g − f |d|σn|
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≤
∑

j∈F

∫

Aj∩Bj

|f − g|d|σn| +
∑

j∈F

∫

Aj\Bj

|f − g|d|σn|

+

∫

K\
⋃

j∈F Aj

|f − g|d|σn|

≤
∑

j∈F

|e2jπi/N − e2(j−1)πi/N | · |σn|(Aj) + 2
∑

j∈F

ε

N
+ 2|σn|

(
K \

⋃

j∈F

Aj

)

<|e2πi/N − 1| ·
∑

j∈F

|σn|(Aj) + 4ε < 5ε.

It follows that

Re〈σn, g〉 ≥ Re〈f, σn〉 − 5ε ≥ α− 5ε

for all n ∈M . Hence

lim sup
n→∞

Re〈λn, g〉 ≥ lim sup
n→∞

Re〈σn, g〉 ≥ α− 5ε.

As ε > 0 is arbitrary, we get

sup
g∈BC(K,C)

lim sup
n→∞

Re〈λn, g〉 ≥ α,

which completes the proof.

6. Final remarks and open questions

In this section we collect some natural questions on (I)-envelopes of bounded

closed convex sets.

Question 6.1: Let X be a Banach space and B ⊂ X be a closed convex set

such that spanB is dense in X . Is the (I)-envelope of B equal to the set of all

weak* sequentially continuous functionals from B
w∗

?

Proposition 2.4 says that, even without assuming that spanB is dense, every

element of (I)-env(B) is weak* sequentially continuous and that (I)-env(B) are

exactly weak* sequentially elements of B
w∗

provided BX∗ is weak* sequentially

compact. Further, Example 2.5 shows that the answer to the previous question

would be negative if we did not require spanB to be dense.

Hence our question seems to be quite natural. It is open, in particular, if

B = BX . A special case of the previous question is the following one.
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Question 6.2: Let X be a Banach space with the Grothendieck property. Is

then (I)-env(BX) = BX∗∗?

Theorem 3.4 asserts that the converse is true. Example 4.1 shows that for

X = ℓ∞ the answer is positive.

A further related question is the following one.

Question 6.3: Let X be a Banach space such that (I)-env(BX) = BX∗∗ . Let

B be the unit ball of an equivalent norm on X . Is then (I)-env(B) = B
w∗

?

The answer to this question is positive if Question 6.2 has positive answer.

Note, that is is easy to check that (I)-env(B) is the unit ball of an equivalent

norm X∗∗ but it is not clear whether it is equal to B
w∗

.

Question 6.4: LetX be a Banach space with BX∗ weak* sequentially compact

and B ⊂ X be a bounded closed convex set with (I)-env(B) = B
w∗

. Is then B

weakly compact?

Theorem 3.1 says that the answer is positive if BX∗ is weak* angelic. Further,

by Corollary 3.5 the answer is positive if B = BX .

The answer is further positive if X = C[0, ω1]. Indeed, in this case BX∗

is weak* sequentially compact and hence the (I)-envelope of any B is the set

of all weak* sequentially continuous elements of B
w∗

. Further, weak* sequen-

tially continuous functionals from X∗∗ = ℓ∞[0, ω1] are exactly those elements of

ℓ∞[0, ω1] which are continuous at all points with the possible exception of the

point ω1. If B is not weakly compact, then it is not weakly countably compact

and hence there is a countable set C ⊂ B which has no weak accumulation point

in B. Let c be a weak* accumulation point of C in B
w∗

. Then c is continuous

at ω1 and is not continuous on [0, ω1]. It follows that c is not weak* sequentially

continuous and hence c /∈ (I)-env(B).

It is not clear whether an analogous argument could work in general.

Acknowledgement: The author is grateful to Petr Holický and Jǐŕı Spurný

for helpful discussions on the subject.

Added in proof. After this paper was finished and accepted for publication,

the author found answers to the mentioned open problems. Namely, the answers

to the first three questions are negative. In fact, the only Banach spaces for

which the equality (I)-env(BX) = BX∗∗ holds in any renorming are the reflexive

ones. This result is contained in a paper (I)-envelopes of unit balls and James’
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characterization of reflexivity by the author (Studia Math. 182 (2007), no. 1,

29–40). Moreover, the answer to Question 6.4 is easily seen to be positive.

Further, Theorem 3.4 was independently proved by O. Nygaard (see Ann.

Math. Inf. 32 (2005), 125–127).
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